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ABSTRACT 

Let (Y, S) be a (not necessarilly invertible) topological dynamical system 

on a zero-dimensional metric space Y without periodic points. Then 

there exists a minimal system (X, T) with the same simplex of invariant 

measures as (Y, S). More precisely, there exists a Borel isomorphism 

between full sets in Y and X such that  the adjoint map on measures is 

a homeomorphism between the corresponding sets of invariant measures 

in the weak* topology. As an application we construct a minimal system 

carrying isomorphic copies of all nonatomic invariant measures. 

In troduct ion  

Let (X, E, #) be a standard Borel probability space and let T be a measurable 

measure-preserving transformation from X into itself, i.e., such that #(A) --- 

#(T-I(A)) for every A C E. Then (X, E, #, T) is called a measure-theoretic 

dynamical system or an endomorphism. An invertible T is often called an 

automorphism. A measure-theoretic dynamical system is called ergodic if all 

T-invariant sets (i.e., A E E satisfying T(A) C A) have either measure 1 or 

0. Two measure-theoretic dynamical systems (X, E, #, T) and (X', E', #', T') 

are said to be isomorphic if there exists a bimeasurable bijection r X0 -~ X~, 

where X0 C E, X~ C E', p(X0) = #'(X~) = 1, which sends the measure # to #' 

(i.e., #(A) = #'(A') whenever A' = r  A C E), and which is equivariant, i.e., 

o T = T ~ o r #-almost everywhere. A system isomorphic to an ergodic one is 

ergodic. 
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By an a s s i g n m e n t  we will mean a function ko defined on an abstract metriz- 

able Choquet simplex 7), whose "values" are measure-theoretic dynamical sys- 

tems, i.e., for p E 7 ), ~(p) has the form (Xp, EB, #p, Tp). Two assignments, �9 on 

a simplex 7) and ~ / o n  a simplex 7)~, are said to be equ iva len t  if there exists 

an affine homeomorphism of Choquet simplexes 7r: 7) ~ 7)1 such that  for every 

p E 7) the systems kO(p) and kol(pl), where pl = ~(p), are isomorphic. 

By a topological dynamical system we shall mean a pair (X, T), where X is a 

compact metric space and T is a continuous map of X into itself. A topological 

dynamical system (Z, T) is minimal if for every x E X the orbit {Tn(x): n C N} 
is dense in X. In the context of a topological dynamical system (X, T), by a 

"measure" we will always mean a probability measure on the Borel sigma-field 

Bx. By 7)T(X) we will denote the collection of all T-invariant measures on 

X, i.e., measures # preserved by T, in other words such that  (X, Bx,p,T) 
becomes a measure-theoretic dynamical system. It is well known that 7)T(X) is 

a nonempty compact, for the weak* topology of measures, metrizable Choquet 

simplex whose extreme points are precisely the ergodic invariant measures. A 

topological dynamical system (X, T) determines a natural assignment on the 

simplex 7)T(X) by the rule: # H(X, Bx, #, T). 
This note contributes to the investigation of the following abstract problem: 

Characterize the assignments equivalent to the natural assignments arising from 
minimal topological dynamical systems. The renowned Jewett-Krieger theorem 

solves the problem for the trivial (one-point) simplex and automorphisms; every 

assignment of an ergodic automorphism can be equivalently realized by a mini- 

mal (strictly ergodic) invertible zero-dimensional topological system. A. Rosen- 

thal [R] proved an analogous theorem also for ergodic endomorphisms. We will 

provide insight into the case of nontrivial simplexes. 

As an application of our result we will create a noninvertible version of the 

"universal system" of Weiss. Recall that  B. Weiss [W] constructs a minimal 

invertible system whose assignment's range contains (up to isomorphism) all 

possible invertible measure-preserving transformations. 

Let us mention that  I. Kornfeld and N. Ormes have recently obtained re- 

sults overlapping with our main theorem. We will discuss the similarities and 

differences in the next section. 

R e f i n e m e n t s  of  t h e  p r o b l e m  a n d  f o r m u l a t i o n  of  t he  m a i n  resu l t  

For nontrivial simplexes there is no known characterization of the assignments 

realizable in minimal systems. Likewise, there is no characterization of the as- 
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signments realizable in topological (not necessarily minimal) systems. Though, 

there are some obvious restrictions on such assignments. Let us begin with the 

most general and obvious ones: 

(R1) ~ assigns ergodic systems to extreme points; 

(R2) �9 obeys the ergodic  decompos i t ion  rule: if p = f ed~p(e), where ~p 

is the unique probability measure with barycenter at p, supported by the 

extreme points e of P,  and ~(p) -- (XB, Ep, #p, Tp), then #p admits a 

decomposition #p -- f pr with each #e ergodic, preserved by the 

transformation Tp, and such that (Xp, Ep, #e, Tp) is isomorphic to O(e). 

These two restrictions apply to assignments arising from any (not necessarily 

minimal) topological dynamical systems and follow from the basics of ergodic 

theory. They allow us to focus on assignments defined only on the extreme points 

of simplexes, and associating ergodic measure-preserving transformations. 

In minimal realizations another restriction is obvious: 

(R3) The assigned measure-theoretic dynamical systems are nonatomic. 

Indeed, the atomic part of an invariant measure is supported by finitely many 

periodic points, so that the only assignments involving atomic measures and 

realizable in minimal systems are those on trivial simplexes assigning a measure 

supported by a single periodic orbit. We exclude such trivial systems from our 

considerations (they are uniquely ergodic). 

It is obvious that the above list of restrictions is incomplete. There must 

be some kind of "measurability" or even "semicontinuity" of the assignment 

involved, but due to lack of a natural topology or measurable structure in the 

"class of classes" of measure-theoretic dynamical systems modulo isomorphisms, 

they seem extremely difficult to capture. A manifestation of the existence of 

such type of restriction is seen in the following condition, valid without assuming 

minimality: 

(R4) The entropy function p ~ h(~(p)) := h~p(Tp) must be a nondecreasing 

limit of upper-semicontinuous functions (see [D-S]). 

In this note we exploit the following approach: an assignment determined by 

a non-minimal topological dynamical system should possess all the mysterious 

"measurability" or "semicontinuity" properties. Does minimality impose any 

further restrictions other than (R3)? In other words, if ~ is an assignment 

determined by an arbitrary topological dynamical system (Y, S) having no pe- 

riodic points (this is (R3) for such assignments), does there exist a minimal 

topological dynamical system (X, T) whose assignment is equivalent to ~? 

We will answer this question affirmatively in the case of Y zero-dimensional: 
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THEOREM 1 : If  Y is zero-dimensional and (Y, S) has no periodic points, then 

the assignment determined by (Y, S) is equivalent to an assignment determined 

by some minimal system (X, T). 

In particular, we will be able to easily create minimal systems with the simplex 

of invariant measures spanned by an arbitrarily preassigned finite collection 

of nonperiodic ergodic measures. Simply, we apply the above theorem to the 

disjoint union of the strictly ergodic realizations obtained by the Jewett-Krieger 

or Rosenthal theorems. 

Independently, Kornfeld and Ormes ([K-O]) have recently investigated the 

assignments (under the name of "families of ergodic automorphisms") in almost 

the same spirit, and have proved a result, which can be formulated verbatim as 

Theorem 1" with three modifications: 

�9 the system (Y, S) is assumed invertible, 

�9 it is assumed to have at most countably many ergodic measures, 

�9 the minimal system (X, T) is obtained within the topological orbit equiv- 

alence class of any a priori given minimal Cantor system whose simplex 

of invariant measures is aitinely homeomorphic to that of (Y, S). 

The realization within a prescribed orbit equivalence class is clearly an essential 

advantage of the quoted result over ours. Roughly interpreted, it says that the 

affine-topological form of the simplex of invariant measures is the only "recog- 

nizable in terms of ergodic theory" invariant of topological orbit equivalence. 

On the other hand, the invertibility and countability assumptions restrict the 

range of that theorem. 

Let us remark that on simplexes with countably many extreme points, every 

nonnegative function h satisfying the decomposition integral formula is in fact a 

nondecreasing limit of upper-semicontinuous functions. Namely, by the mono- 

tone convergence theorem, it is the limit of the functions obtained as integral 

extensions of the functions h �9 1{el,e2 ..... en}, where (ei) is some ordering of the 

extreme points. Thus, the restriction (R4) is in fact void for such simplexes. If 

it happens that the mysterious "measurability" or "semicontinuity" conditions 

are of a similar nature (i.e., some parameter functions are monotone limits of 

semicontinuous functions), then they are also void in the countable case, leading 

to the following, somewhat optimistic, yet appealing conjecture: 

* Added in proof'. While this paper was being refereed, Konrnfeld and Ormes 
improved their result making it more general (but less similar to our Theorem 1): 
they actually proved Conjecture 1 (see below) in the invertible case (maintaining 
the additional orbit equivalence class statement). 
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CONJECTURE 1: Every nonatomic assignment on a simplex with countably 

many extreme points is realizable in a minimal system. 

Our Theorem 1 (as well as the theorem of [K-O]) automatically extends to 

systems (Y,S)  with so-called small boundary property, i.e., existence of ar- 

bitrarily fine finite open covers by sets with boundaries having measure zero 

for all invariant measures. Every system with small boundary property has 

a zero-dimensional extension which yields exactly the same assignment. The 

construction is standard (see, e.g., [D] for a description). The small boundary 

property has been exploited in the works of E. Lindenstrauss (see ILl and ref- 

erence therein). Lack of periodic orbits plus any of the properties listed below 

suffices for (Y, S) to have the small boundary property: 

�9 Y is zero-dimensional (includes all subshifts over finite or countable al- 

phabets); 

�9 (Y, S) has finitely or countably many ergodic measures; 

�9 S is invertible and Y finite-dimensionai [K]; 

�9 (Y, S) is invertible, has finite topological entropy and a nonperiodic mini- 

mal topological factor [L]. 

Finally, as we shall see in the proof, zero-dimensionality is needed only for 

the existence of closed-and-open (clopen) markers, which immediately implies 

that 

THEOREM 2: Theorem 1 also holds in the case where Y is not zero-dimensional 

but (Y, S) admits a nonperiodic /:actor with the small boundary property. 

Technical lemmas, precise formulation of  the result, and proofs 

We will prove a statement stronger than equivalence of the assignments. We will 

prove that every zero-dimensional system without periodic points is conjugate 

to a minimal flow in a rather strong sense, which we specify in the following 

definition. Let (X, T) be a topological dynamical system. A Borel subset X ~ C 

X is called a full set if it has measure 1 for every invariant measure # E PT(X) .  

Definition 1: By a Borel* i somorphism between two topological dynamical 

systems (X, T) and (Y, S) we shall understand an equivariant Borel-measurable 

bijection r X ~ ~ Y~ between full invariant subsets X ~ C X and Y~ C Y~, such 

that the conjugated map r "PT(X) ~ P s ( Y )  defined by the rule r = 

#(r (A E Bx)  is a homeomorphism with respect to the weak* topology. 

If r is a Borel* isomorphism, then the pair r and r establishes an equivalence 

between the assignments determined by (X, T) and (Y, S); r plays the role of an 
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affine homeomorphism between the simplexes, while, for each pair of measures it, 

v = r (#), r provides the isomorphism between (X, Bx, #, T) and (Y, By, ~, S). 

Notice that  any equivariant Borel-measurable bijection r between full invariant 

sets provides an affine bijection r between the simplexes of invariant measures. 

By compactness of these simplexes, in order to verify r as a homeomorphism 

(and thus a Borel* isomorphism) it suffices to check its weak* continuity. 

We will exploit the notion of n-markers. The following lemma is a version 

of the so-called Krieger's marker lemma (see [B] for the invertible case) in the 

absence of periodic points. 

Definition 2: A subset F of a topological dynamical system (]I, S) is called an 

n - m a r k e r  (n E N) if 

(1) the sets T - i ( F )  (0 < i < n) are pairwise disjoint; 

(2) the sets T-i(F) (0 < i < m) cover Y for some m _> n. 

The system (X, T) is said to have the m a r k e r  p r o p e r t y  if there exist clopen 

n-markers for all n C N. 

LEMMA 1: Every topological system admitting a zero-dimensional factor (]I, S) 

without periodic points has the marker property. 

Proob It suffices to prove the lemma for (Y, S). Then the n-markers lift to n- 

markers in the larger system. For given n, every point y C ]z belongs to a clopen 

set Ey such that  T-i(E~) (0 < i < n) are pairwise disjoint. Choose/d = {Uj}, 

in a finite subcover by the sets Ey. The cover/r = {U~} = {T-n'~(Uj)}, where 

m is the cardinality of b/, has the same property; each set has pairwise disjoint 

n § 1 preimages; in addition, their nm forward images are also clopen. Define 

inductively 
F 1 :~U~,  

--n<i<n 

and set F = Fm. This is clearly a clopen set. The verification of (1) is straight- 

forward, and it is also not hard to verify that  2n + 1 preimages of Fm cover Y. 
| 

We are in a position to state (and prove) the main theorem of this note, which 

obviously covers Theorem 1 (and implies Theorem 2): 

THEOREM 3: If(Y, S) has the marker property, then it is Borel*-isomorphic to 
a minimal topological dynamical system (X, T). In particular, the assignment 
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determined by (Y, S) is equivalent to the assignment determined by the minimal 

system (X, T). 

Proof: The mainframe of the proof relies on techniques developed in [D-L]. 

However, we needed to change most of the technical details. The proof is pre- 

sented in a completely self-contained way. The construction of the Borel* iso- 

morphism is by induction. As we want to reserve the letter n to denote the 

coordinates in the elements of our subshifts, we will use the letter t for the nat- 

urals enumerating the induction steps (and some other objects). It is an easy 

exercise to arrange a decreasing (with respect to inclusion) sequence of clopen 

n-markers. We will use a subsequence of such, denoted by Ft. By Pt < qt 
we will denote the upper and lower bounds on the gaps between visits in Ft, 

respectively. We require that  the gap sizes grow so fast that  the sequence 

1 (rt + 4)qt 1 
el ~, ~t+l .-- Pt+l 4 

is summable (the numbers rt will be specified later). For easy reference we note 

the following equality: 

(3) pt+let+l = (rt + 4)qt. 

Let ]I0 = Y U {0, 1, 2 , . . . ,  c~} with such a metric d that  the et-ball around 

t is exactly { t , t  + 1 , . . .  ,o c}. Zeros will be considered "empty spaces", other 

integers are "markers" and y E Y are called "symbols". 

To begin, we replace each y by the (N0 • N0)-matrix (Yk,n)kCNo,ne~o with the 

top row (indexed by k = 0) filled with zeros except at positions n corresponding 

to the times of visits of Tny  to the marker sets Ft, where we put the largest 

index t of a visited marker (the symbol oc will be used at most once in a 

representation of a point.) The row number 1 is filled with the orbit of y, i.e., 

it reads (Yl,0, Yl,1, Yl,2,... ) -~ (Y, Ty,  T2y , . . .  ). All further rows are empty. 

t i tl  ~;2 "'" ~ the top row, markers 

Y =- (Yk,n)kENo,nCNo = Y 0 Y1,1 Yl,2 "'" ~- first row, orbit 
0 0 . . .  ~ further rows, empty 

Because the markers occur at visits to clopen sets, this procedure yields a topo- 

logically conjugate representation of (Y, S) as a subset of Y0 N~ • with the hor- 

izontal shift map S; (S(y))k,n = Yk,n+l. From now on, by (Y, S) we shall mean 

this representation. 
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By a block of length l we shall mean any "vertical strip" of the form B = 

(Bk,n)kCNo,O<n<l with entries in Y0. We define a distance D between blocks as 

diam(Y0) for blocks of different lengths, and 

oo 

D ( B , B ' )  =sup{  E 2-kd(Bk,,~,B~k,n): 0 < n < l} 
k=O 

for blocks of the same length I. 

Let nl ,  n2 be the coordinates of some two consecutive markers larger than or 

equal to t (i.e., t~ 1 >_ t, tn~ >_ t, and t,, < t for nl < n < n2) in the matrix 

representation of some y E Y. The block (Yk,n)kENo,nl<n<_n2 will be called 

an or ig ina l  t-block. By the arrangement of the marker sets Ft, each original 

(t + 1)-block is a concatenation of original t-blocks, all but the last one ending 

with the marker t, and the last one ending with some m >_ t + 1. The terminal 

section of length pt+let+l of a (t + 1)-block will be called a buffer .  By (3), the 

buffer contains at least rt + 4 complete t-blocks. 

buffer 
t-block ~. 

::::::t :::::::I ... ::i:l ::::i:: ... :::::: 
(t + 1 ; b l o c k  

Each y E Y (in the matrix representation) decomposes, for each t, in a unique 

way to concatenation of original t-blocks, the first one typically incomplete 

(truncated on the left). 

By compactness of Y0, there is a finite family of original t-blocks et-dense in 

the metric D among all original t-blocks. We define the number rt appearing 

in (3) as the eardinality of this family (the numbers Pt+l and et+l should be 

established after that). 

We will now define a sequence of equivariant injective and continuous maps 

Ct from Y into Y0 N~176 The map r is the identity. Assume that  Ct is defined 

as a length-preserving continuous code on t-blocks, replacing original t-blocks 

by their images called r egu la r  t-blocks. Assume also that  the contents of the 

row number 1 of the original t-block B is memorized in the "bottom line" of 

Ct(B), i.e., 

B l , n  = (r 

with k,~ = sup{k: (r ~ 0}, and that  k,, _< t for each n, i.e., that  all 

rows below t in the regular t-blocks are empty. Then we define the map Ct+l 
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as a code on the original (t + 1)-blocks B as follows: Let V be a concatenation 

of selected rt original t-blocks which are et-dense among all original t-blocks, 

with the terminal markers changed to t (this will not affect the density), and 

arranged in a certain (arbitrary) order. Let W -- C C V ,  where C is a fixed 

original t-block of maximal length qt. The length of W is at most ( r t  + 2)qt (the 

length of the buffer minus 2 q t ) .  The choice of W does not depend on B. Then 

proceed: 

(A) First apply the code Ct to all component t-blocks of B and of W; this 

creates Ct(B) and Ct(W). 
% ( c c )  % ( v )  

1 . . . . .  t . . . . . .  ~ : t . . t . . . t . . . . t  . . . . .  t . . . . . .  t . . . . . .  

!ilililllLllll ilITillllllllllLllllllllillllll11111! 
r 

..... t....t..t...t..t ....... t..t..t....t..t....t...t ....... t..t..t ..... t ...... t ..... t..t..t ...... t....t...m 

••••••i1i••••••i•i1i1i1••••••••••••••i•••••L•••L•L••••i•i1i•i[i•••i•i•i•i111••LTL•••••••L•i•ill••••••••••••L•••11111 

Ct~ B ) 

Figure 1. Step (A). Creating the block W, applying the code Ct. The 

short vertical lines represent the t rows containing symbols (and also 

zeros), vertical dots mark completely empty rows (this is skipped in 

the presentation of Ct (W)). 

(B) Determine a "cutting place" (the algorithm for that will be described 

later; it depends upon B). Let R denote the rectangle in rows 0 through t 

(including the marker row) from cutting place to the right end of Ct(B), let Q 

denote the rectangle of the same size in Ct(W), also ending at the right end. 

. . . . . .  t . . l . . . t . t . . t . . . t . . . . t  . . . .  t . . . . . .  t . . . . . .  t l  

IL111L11111Lllllllilili111111~li11111111111111111 
T 

c u t  

. . . . .  t . . . . t . . t . . . t . . t  . . . . . . .  t . . t . . t . . . . t . . t . . . . t . . . t  . . . . . . .  t . . t . . t  . . . . .  t . . . . . .  t . . . . .  t . . t . i ~  . . . . . .  t . . . . t . . . m  

ILl••••••••L•••••••••••••••••1••11i•i•i•i•i•i•i•i•••i•i•i1!•i•i•••i•••i•••••••••••••••••••L•L•L•I•I1I•i•••i•••••••i•i 

Figure 2. Step (B). Finding the cutting place and identifying the 

rectangles R and Q. 
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(C) Copy the contents of the bottom line of R into the row t + 1. Then 

overwrite R by Q, except the terminal marker m which remains unchanged. 

. . . . .  t . . . . t . . t . . . t . . t  . . . . . . .  t . . t . . t . . . . t . . t . . . . t . . . t  . . . . . . .  t . . t . . t  . . . . .  t" . t . t . . t . . . t . . . . t  o . . t  . . . . . .  t . . . . .  r n  

I r I I I I I I I I I J I J I I J I E I I I I I I I r I II I J I I I I III I J I I I I I I I I I I I I I I I III I I I I I I I I, I I I I I I Ill I III I I I I I I I II I I I, m l i i i, i i i i i i i i i i i i i! 

Figure 3. Step (C). Copying the bottom line of R into row t + 1, 

replacing R by Q. 

Notice the following properties of the code Ct+i: 

(4) Ct+l (B) differs from Ct (B) only within the buffer. 

(5) The rows below t+  1 in all regular (t+ 1)-blocks are empty, and the content 

of the original (t + 1)-block is memorized in the bottom line, as required by the 

induction. Thus (~t+l is a bijection. 

(6) If the D-distance between two original (t + 1)-blocks is smaller than et+l, 

then they have the same markers (except the terminal one) and then r does 

not increase the distance between them (in particular this implies continuity). 

(7) Markers t + 1 and higher have not been changed. 

(8) Each regular (t + 1)-block is a concatenation of regular t-blocks (possibly 

with symbols added in row t + 1), and one exceptional block containing the 
cutting place. We call it an i rregular  t-block. Inductively, for each s _< t, 

the regular (t + 1)-block is a concatenation of regular s-blocks (possibly with 

symbols added below row s) and irregular s-blocks arising at all cutting places 

in codes r r 

We now describe the algorithm for finding the cutting place. It will be estab- 

lished in t steps enumerated decreasingly t , t  - 1,t - 2 , . . . ,  1. We will be com- 

paring the markers in both Ct (W) and in Ct (B) (with their right ends aligned). 

Begin by placing a temporary mark * under the marker t at the right end of the 

block Ct(CC). In each step s find the nearest marker s in Ct(B) left from (or at) 

the mark *, and then find the nearest marker s in Ct(W) left from there. If the 

distance between these two markers s is at least 2p~es, then move the �9 mark 

to the position p~e~ units left from the considered marker s in Ct(B); otherwise, 
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put it pses units left from the considered marker s in c)t(W) (see figure below). 

>2ps% 

r  . . .  . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . .  ~. . . . . . . .  

* < * 

~ ( B )  . . .  ~ s . . . . . . . . . . . . . .  .*. . . . . . . .  . . .  

Pss  

o r  

Ps% <2pses 

r  . . . . . . . . . . .  ~ . . . . .  ? .  . . . . .  " . . . . . . . . . . . . . . . . . . . . . . .  . . .  
T T 

r  . . . .  . . . . . .  : . . . . . . .  .*. . . . . . . . . . . . . . . . . . . .  s . . . . . . . . . . . . . .  *. . . . . . . . .  . . .  

Then pass to step s - 1. The position of the mark * after step 1 is where we 

cut. 

We now prove the following statement about the irregular blocks: 

(9) An irregular s-block has length between Ps (1-3es)  and 2qs, and it contains 

a complete buffer of a regular s-block. Every such block appears within the 

buffer of a regular st-block for some s I > s. 

Assuming (9) for Ct, we need to examine only the "new" irregular s-blocks 

created by the cuts in the code r Go back to the cutting algorithm for 

r In step t (the first one) of that  algorithm we move the mark * by no more 

than qt + 3ptet positions. After that  move, the distances from that  mark �9 to 

the nearest markers t in Ct(W) on both sides and in Ct(B) on the right are at 

least Ptet, and in Ct(B) on the left it is at least pt(1 - 3et). In particular, the 

. is now outside any buffers of the t-blocks, in an area where, by the inductive 

assumption, there are only regular (t - 1)-blocks, with this area extending to 

the left far more than two such blocks. Thus, similarly, in the step t - 1 we 

move the �9 by not more than qt-1 + 3pt-lEt-1. Inductively, in each step s <_ t 

we move the �9 by at most qs +3ps% positions and after that  move the distances 

from it to the nearest markers s in Ct(W) on both sides and in Ct(B) on the 

right are at least p~E~, and in Ct(B) on the left it is at least p~(1 - 3es). By 

the fast growth of the numbers qs (see (3)), the moves in further steps amount 

to less than Ps%. Using this for s = t, because qt + 4ptet < 2qt, we can see 

that  the cutting place will not be moved beyond Ct(W) or beyond the buffer in 

Ct (B). For all s _< t we conclude that  eventually the cutting place falls at least 

Ps~ positions left from the nearest markers s in both Ct(W) and Ct(B) and at 

least p~(1 - 4 % )  right from the nearest marker s in Ct(B). In particular, it falls 

outside the buffers of the s-blocks, thus the irregular (s - 1)-block created by 

the code Ct+l is concatenated from portions of two regular (s - 1)-blocks, hence 
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its length is at most 2qs-1. (Also, the irregular t-block created by this code is 

obviously created from regular t-blocks since there are no irregular t-blocks yet.) 

On the other hand, for each s _~ t the irregular s-block inherits from 0t (W) its 

right part of length at least p8c8, so it inherits the unchanged buffer, and from 

Ct(W) it inherits its left part of length ,at least p8(1 - 4es), so the total length 

of the irregular s-block is at least ps(1 - 3e8), as required. This concludes the 

proof of (9). 

Another feature of the code r is very important: it works on (t + 1)-blocks 

B truncated on the left. For such blocks, while performing the algorithm for 

finding the cutting place, often we do not see the nearest marker s in Ct(B) 

on the left of the * mark. Nonetheless, in such cases, we do know that  the 

cutting place is left from the truncation point (which suffices; in such case we 

simply do not cut). If this marker does appear in the visible part of the block 

Ct(B), then, since we have full knowledge of the distance to the next marker 

s in Ct(W) (even if that  one appears left from the truncation point), we can 

complete shifting the * (if it goes left from the truncation point, then we can 

stop the algorithm). Thus the map (~t+l  is applicable and shift-equivariant on 

all matrices representing the elements y E Y. 

Denote 

Yt = {y E Y: the coordinate 0 falls in the buffer of an original t-block}, 

Y":-Y\ n 
t : l  m = t  

= {y E Y: the coordinate 0 falls in the buffer of an 

original t-block for at most finitely many t}, 
oo 

Y'= I'1 s-"(Y") 
n=O 

= {y E Y: every coordinate n falls in the buffer of an 

original t-block for at most finitely many t}. 

Notice that  for fixed t and any y E Y, the frequency of visiting the set Yt by 

the orbit of y is at most et. Thus et estimates #(Yt) from above for all shift- 

invariant measures #. By summability of the epsilons, Y" is hence a full subset 

of Y. Therefore, Yt is a full invariant subset in (Y, S). 

Now, for y E Y~ the code images Ct(y) converge coordinatewise (at each 

coordinate only finitely many codes intervene). Thus on Y~ the limit map r = 

limt Ct is well defined (and, of course, measurable). Now let X = r This 

is a closed subset of Y0 N~ • invariant under the horizontal shift T. For each t, 
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every element r (y C yr)  is a concatenation of regular and irregular t-blocks. 

This property obviously passes to all elements of X. Although in X we may 

not be able to determine whether the coordinate 0 is in a (truncated) regular 

or irregular t-block, still we may determine when it is certainly not in its buffer 

(when the first marker m > t is far enough), and this happens with frequency 

at least 1 - et/(1 - 3et) (in the shortest irregular t-blocks). Thus, by the same 

argument as for Y' (now using summability of the numbers et/(1 - 3et)), the 

set 

X '  = {x C X: every coordinate n falls in a buffer of a 

regular or irregular t-block for at most finitely many t} 

is a full invariant subset in (X, T). 

We will now prove minimality of (X, T). For y C Y', every initial rectangle in 

r is part of a regular t-block (for t sufficiently large). Every regular t-block 

has an et approximate in Q, which is later introduced (with symbols added 

in lower rows) in the buffers of all regular and irregular (t + 1)-blocks, hence 

appears syndetically (with gaps bounded by 2qt+l) in each r (y C Y'). By a 

standard argument, this already implies minimality of the closure of r 

Finally, we need to show that  (Y, S) and (Z, T) are Boret* conjugate. At 

first we will show that  r is injective on Y~ and that  the image contains X'.  

Injectivity is almost immediate: for y C Y~, the number of nonempty rows at 

each coordinate of r is finite, so we can read the original y from the bottom 

line. Now let x E X'.  Because the row t is nonempty only in the buffers of the 

t-blocks, there are only finitely many symbols in the zero column of x. Let y be 

the lowest of them. Let y also denote the matrix representation of the symbol y. 

We need to show that  y C y t  and that  r -- x. Consider an initial rectangle 

in x. For sufficiently large t this rectangle is part of a truncated regular t-block 

which continues far to the right. This regular t-block is an image by Ct of an 

original t-block, in which the symbol y appears at an appropriate place. This 

means that  Ct(Y) coincides with x on that  rectangle. Moreover, the nearest 

marker m > t in y is at the same place as in x. Because this is true for all 

sufficiently large t, we obtain that  y E Y~ and r = x. 

By the proved properties of r the map r "Ps(Y) ~ PT(X) is an affine 

bijection. We need to verify its weak*-continuity. By the elementary properties 

of the weak* topology, it is seen that  r = lim r We shall prove that  this 

convergence is uniform. Because all the maps r are continuous, this will suffice 

for continuity of r In the space Y0 N~215176 the weak* distance between measures 

depends on values these measures assume on open e-cylinders over rectangular 
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regions containing the coordinate (0, 0). Thus the uniform distance between r 

and r  (m > t) is estimated by the sum of change of frequencies of visits of 

Ct(Y) and era(Y) in a certain family of such e-cylinders over sufficiently large 

rectangles and for sufficiently small e. But these changes are small for large 

t, regardless of y, because the maps introduce modifications on rare sets of 

coordinates, with frequencies summable over t. The sequence of maps r is 

thus uniformly Cauchy, and hence converges uniformly. | 

Remark 1: Notice that the map r restricted to y I  preserves the number of 

preimages by the shift, i.e., for y e Y ' ,  ~ S - I ( y )  = ~T- I ( r  This follows 

easily from the fact that  the orbit of each point is stored in the bottom line 

and all other entries are determined by this orbit. Such preservation does not 

follow automatically from Borel* isomorphism. There are easy examples of 

Borel-isomorphic pairs of strictly ergodic (i.e., minimal, uniquely ergodic), hence 

Borel* isomorphic systems, where all points from a set of positive measure in one 

system (which may even be invertible) receive, in the other system, additional 

preimages from a null set. 

T h e  un ive r sa l  s y s t e m  

In order to create a minimal universal system it now suffices to build a non- 

minimal zero-dimensional one having no periodic points. 

THEOREM 4: There exists a minimal zero-dimensional system (Xu,T~) such 

that for any measure-preserving transformation (Y, ~,, z,, S) with v nonatomic 

there exists an invariant measure # on X~ such that (X~, Bx~, #, T~) is isomor- 

phic to (Y, ~, ~, s). 

Proof: It is a standard fact that  every system (Y, E, u, S) has an isomorphic 

realization as an invariant measure on (r a), where ~r denotes the left shift on 

the countable product of Cantor sets. Such a (non-minimal) universal system 

has, however, many periodic points, so we cannot apply our Theorem 1 yet. 

We need to "blow up" the periodic orbits into nonperiodic subsystems without 

affecting too much other invariant measures. 

First, we practice the "blowing up" technique on shifts over finite alphabets. 

Let (Y, S) denote the one-sided shift over, say, l symbols. We represent (Y, S) as 

the shift on (No • N0)-matrices with an additional three symbols 0, a, b, where 

0 is treated as an empty cell. Initially, each y is replaced by the matrix with 

y placed in row number 0 and all other rows empty. Choose and fix a member 
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z of some nonperiodic minimal two-sided subshift over two symbols a, b (for 

example, the classical Morse sequence). We now modify the elements of Y as 

follows: 

For each n >_ 1 we scan every not eventually periodic point y for periodic 

patterns of period n and length larger than n. For every such pattern we find 

its right end (because y is not eventually periodic, the right end of such a periodic 

pattern is always well determined). If n + k is the total length of such a pattern, 

we place z [ - k  + 1, 0] in row number n precisely under the leftmost k positions 

of that  periodic pattern. In the figure below y = 3333312112112112121333... 

is a member of the shift over three symbols. Notice that  the procedure works 

in a shift-equivariant way even when the repetitions reach the coordinate 0 (so 

we cannot predict its left end). 

3 3 3 3 3 1 2 1 1 2 1 1 2 1 1 2 1 2 1 3 3 3 . . .  
a b b a 0 0 0 a 0 0 a 0 0 a 0 0 0 0 0 b a 0 . . .  
b b a 0 0 a 0 0 a 0 0 a 0 0 b b a 0 0 a 0 0 . . .  

b a 0 0 0 b b a a b a b b a 0 0 0 0 0 0 0 0 . . .  

Let Y~ denote the closure of all matrices obtained in this manner from not 

eventually periodic sequences y. Each periodic point of period n admits in row 

n some sequences from the one-sided factor Z of the system generated by z. In 

other rows the filling is uniquely determined. All not eventually periodic points 

continue to admit a unique filling in all rows. In fact, the modification produces 

an extension (Y', S') of the full shift (Y, S). The factor map (projection on 

the first row) is 1-1 on not eventually periodic points. Each periodic orbit lifts 

to a joining of that  orbit with finitely many copies of Z (which contains no 

periodic points). The set of all eventually periodic but not periodic points of 

(Y, S) carries no invariant measures and so does its lift in (Y', S'), thus we can 

completely ignore this set. 

We can now deal with the full shift over the Cantor alphabet. By representing 

the elements of ~ as one-sided 0-1 sequences written as vertical columns (directed 

downward), we can picture (~No, a) as the horizontal shift on 0-1 (No z No)- 

matrices. The 0-1 full shift (Y, S) visible in the top row is a factor of (~No, or). 

The "blowing up" technique applied to(Y, S) produces (yt ,  S t) with no periodic 

points. Now consider the fiber product (X, T) of (Y~, S') with (~No a) over 

(Y, S). This is a zero-dimensional system without periodic points which is an 

extension of (~No a), injective on points which are not eventually periodic in the 

top row. However, every point which is eventually periodic in the top row has 
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now obtained multiple lifts. In this manner we have affected some nonperiodic 

ergodic measures (by joining them with something). But this does not matter. 

Every such measure obviously admits another representation in the full shift 

over the Cantor alphabet, supported by sequences not periodic in the top row 

(and this copy will not be affected by our "blowing up" technique). Namely, 

if a measure admits a representation with some row almost surely nonperiodic, 

then we can simply switch rows and put this row on the top. If a nonperiodic 

ergodic measure admits a representation, where with probability one every row 

is periodic, then the measure is isomorphic to an adding machine. An adding 

machine has a nonperiodic one-row representation in the form of a regular 0-1 

Toeplitz flow, which we can use as the first row and make all other rows constant. 

The application of Theorem 1 is now available for (X, T) and concludes the 

construction of the minimal universal system (Xu ,  Tu). | 

Appendix 

There are several reasons why the construction of r in the proof of Theorem 3 is 

so complicated. We will try to convince the reader that  it is not unnatural and 

that,  in fact, we do not have much of a choice. For minimality we must introduce 

certain syndetically repeating rectangles in the top rows. Since we want the 

codes to be injective, we must "memorize" the original contents somewhere. 

For the sake of shift equivariance on one-sided sequences, we must do it in 

the same column. Otherwise, code images of two elements y, yl differing only at 

coordinate 0 might either differ further to the right (then ay  and ay'  would have 

to have, by shift equivariance, differing code images, while in fact o'y = ay  t) or 

they might not differ at all, contradicting injectivity. Fhrther, we need to decide 

whether to introduce the new rectangles left or right from the markers. Suppose 

we choose the right hand side. Then consider two elements y, yt differing only 

at coordinate zero in such a way that  Y0,0 = t ~ Y~,0. The code r would 

impose modifications of y at several initial coordinates, while it would not on 

y~. Then again, ay  and ay  ~ would have to have differing code images. Thus 

the changes must be made only left from the markers. This is why the t-blocks 

have their dividing markers included at their right ends, and we change only the 

terminal "buffers". Further complications arise from avoiding accumulations of 

the cutting places. For example, if we attempted to insert rectangles of a fixed 

length not depending on B (for instance, to insert each time the same rectangle 

Q), then, because the (t + 1)-blocks B being coded have varying structure of 

markers s < t, somewhere it could happen that  the cutting place of step t + l  falls 
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very close right from a cutting place of some previous step s. This would leave in 

the image by r only few (the leftmost) entries of the rectangle Q' plugged in 

step s. If this happened for several t, involving the same s, syndetic occurrences 

of Q' could be destroyed. Thus the cutting length must be variable. In invertible 

systems, based on the knowledge of the length of each component t-block of each 

(t + 1)-block being coded, we may assign the cutting precisely at the contact 

place of two such components and then compose the block Q as (r applied to) 

a concatenation of original t-blocks of the form C1C2... CkV, with C1C2... Ck 

individually selected for the desired length. Then no "irregular" t-blocks would 

be created, making further arguments much simpler. Such a technique has 

been in fact used in a preliminary version of this paper concerning invertible 

maps only. But in noninvertible systems we must cope with the situation where 

the initial block being coded is truncated (hence the structure of components 

unpredictable), so that the cutting length cannot be determined, yet we must 

be able to determine the "visible part" of the plugged block. This rules out 

variable concatenations of the form C1 C2.. .  Ck and has lead us to using a fixed 

"extended plugged block" (in the proof that is Ct(CCV)) and only play with 

a variable cutting place. This unavoidably creates the irregular t-blocks, hence 

we need a cutting algorithm to control their length. 
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